Right now I’m having deja vu and amnesia at the same time.
—Steven Wright
Regular OT readers, at least those who haven’t burned out their memory circuits with illegal substances or labored in their studio garrets to produce ten spirals to submit to this year’s suddenly slimmed-down Fractal Universe Calendar, might recall that I already reviewed this image about a month ago. And it’s true. I did. And, basically, I stand by what I said then. But, as with social-political-moral issues, there are also two sides to every review. There is a flip side — a shadow side — a dark side of the force, if you will.
Last month, I observed that DeCelle opened up fractal art to “a new way of seeing” and expressed hope that he would keep “his mysterious secret secret.” Well, it seems his secret has been revealed — and what it opens up could well be a Pandora’s Box for the fractal community
The “secret” is likely found in the latest release of Ultra Fractal 5 and its new image import feature — the function of which is described as follows:
Import PNG, JPEG or BMP images in your fractals with the new image import feature. Simply select a coloring algorithm that contains an image parameter, and you can select any image on your computer to use.
The coloring algorithm determines how the information from the image is used. For example, the standard Image coloring algorithm just displays the entire image in the fractal window.
So, I’m guessing that DeCelle was beta-testing the latest UF iteration, and this added feature is his “secret” ready for digestion by the Fractalbooking masses. No groundbreaking, individual, idiosyncratic formula wizardry was involved. It’s just a new twist on the layering functions of UF — but one that will have profound repercussions for fractal art.
Apparently, users now have the capability in UF5 to import digital images (say, photos) and incorporate them as separate layers. Consequently, it will henceforth be impossible to discern how many layers of a UF image are fractals and how many are photos. So, in the future, when you look at a UF image like this
you’ll never know exactly how the image was made. Are all of the layers fractals? Or are some layers photographs of rusted out car bodies? And does it make a difference?
Maybe not — if one believes that fractal art can embrace radical post-processing. But many UF users have long clung to the fictitious illusion that using UF means they are somehow making “purer” fractals because no post-processing is involved. A laughable remark like this could often be seen on UF images posted to art communities like Renderosity: 100 layers. No post-processing. Sure. As if anything “pure” remained after that sucker had been atom-smashed into a hundred fractal pancakes. But, now, with the introduction of adding layers of photos, can anyone still claim that using UF involves no post-processing? A better question might be whether the resulting images are fractal art at all — or, instead, fall somewhere in the category of mixed-media digital art. The mods overlording fractal galleries at hang-outs like Renderosity and deviantART should immediately begin to wrestle with such questions and determine where UF5 “fractal art” should be properly placed.
I think the implications of this development are staggering, and I suspect both Tim and I will have more to say about this bring-anything-in feature in the days ahead, but here’s an observation right off the top of my head.
Ultra Fractal has now become just another paint program — or, more precisely, a rather expensive Photoshop filter.
Isn’t that obvious? DeCelle imported a digital image of Lars-Gunner Nordström’s Moment in Blue and put it through some layer paces — sort of like running filter rinses over it in a fractal car wash. Is this a complex process — and do you really need to purchase UF5 to get comparable results? Let’s see.
Here is a digital image of Nordström’s original:
Moment in Blue by Lars-Gunner Nordström
Here’s what I did. I saved the image above on my hard drive. I opened and loaded Photoshop. I imported the image above. Using the “Artistic” effects, I applied the “Dry Brush” filter and saved my “work.” Total processing time: 47 seconds. The result:
Nordström + Dry Brush filter
I closed the image above and reloaded the original. I applied the “Watercolor” filter and saved my “work.” Total processing time: 13 seconds. The result:
Nordström + Watercolor filter
I closed the image above and reloaded the original. Wanting a little more pizzazz, I applied the Fresco filter, and actually played with the settings for a few more seconds, then saved my “work.” Total processing time: 24 seconds. The result:
Nordström + Fresco filter
And, hey, I feel your pain. You’re saying: Man, I can’t afford Photoshop — or even Ultra Fractal. Yet, you’d also like to be able to make such state-of-the-tech “fractal art.” No problemo. Here’s what I did. I Googled “free paint programs” and found one called Artweaver. Downloaded it. Installed it. Opened it. Imported the Nordström original, applied the “Oilify” filter, and saved my “work.” Total processing time: 3 minutes, 14 seconds. I could have probably shaved off almost a minute, but I skimmed two other paint programs before settling on Artweaver. The result:
Nordström + Oilify filter
Now compare my results to DeCelle’s image-of-the-week above. Aside from the Fresco effect, can you really tell an appreciable difference between the images — other than some minor gradations? Would you say I was engaged in making “fractal art”? No? What if I reminded you that Photoshop filters run using algorithms? You still say no? Then, you tell me, why is DeCelle’s image fractal art, and my quickie exercises above are not? Because I found DeCelle’s image in the fractal gallery at Renderosity? Because DeCelle’s using Ultra Fractal instead of a paint program?
No, I’m (literally) not buying it — and none of the UF cultists’ admirers’ spinning that is sure to come will change the big picture. Adding photo layers to UF is about as anti-fractal as you can get. Doing so means that the basis for an image being “fractal” or not will now have to come from an assessment of the image and not purely from the software used to make it. An image made in UF5 could just as likely be a retouched photo as a traditional fractal image. In the past, it was possible to try to fob off freaky UF images as fractals by (incoherently) arguing they were made entirely in UF, but now such a claim won’t mean any more than saying you made your fractal work in Photoshop using a plug-in.
Face the facts. UF5 is certainly not exclusively a fractal program, and its use will no longer guarantee that the images made in it will be routinely accepted as fractal art and not some other sort of mixed media. Damien M. Jones’ image, for example, the one self-selected for the 2006 BMFAC, will be the sort of image that must be forever suspect hereafter. How will we know he didn’t just add a photo layer of a pic of dead grapevines being charged with an electric current? And will this year’s BMFAC (assuming there is one) have to add a no-UF5-photo-layers clause to the rules? After all, last year the administrators expressed a desire to see only “artwork that is uniquely fractal; artwork that uses fractal tools to produce less-fractal imagery is not as desirable.” Does the addition of a singe photo layer automatically make an image no longer “uniquely fractal”? Moreover, is our entire movement at increased risk for some de-evolution? Unfortunately, UF5 users will likely now have to make images that look more fractal and not less fractal because viewers cannot trust UF artists not to have used some photo layers to make an image more interesting. That’s progress? If you think so, you might as well skip UF5 entirely and “fractalize” your photos by purchasing the much more versatile and $10 cheaper Paint Shop Pro instead.
At least there’s one good offshoot from Ultra Fractal being downgraded to the status of just another image manipulation filter. No more will I have to listen to any self-righteous proclamations from UF users about how legit their fractal art is — and what a cheat and a hack I am because I prefer post-processing fractals using various graphic programs. Think I exaggerate? Here’s Kerry Mitchell, from an OT comment thread on a post about the UF winners in the 2007 BMFAC, taking a poke at the style of art that both Tim and I produce:
All that’s missing [from the 2007 BMFAC winners] are a few Moire patterns and canned filters.
And, now that I think about it, wasn’t Mitchell the same guy who also argued this in another OT comment thread:
With fractals, I think it’s important for every artist to channel their inner rocket scientist to some level. Not only are we using tools (and every artist needs to know their tools), but the tools are not usually ones that are commonplace (almost everyone has a sense of light or stone), so some study is needed to understand what’s happening. Also, we have the chance to create our own landscapes, not “just” to photograph or paint them.
So, Kerry, now that UF has become just another “canned filter” and can be used to “just” paint photographs, do you still feel the same way?
~/~
This is just the tip of the iceberg. Can you imagine what will happen when the Fractalbookers get their hands on this tool? The kitsch floodgates will burst open. DeCelle, at least, has the good taste to work with an artist of Nordström’s caliber. But I’m betting the Fractalbook throngs will not be so discriminating. Expect a tsunami of “fractalized” photos of pets, kids, online friends, self-portraits, summer vacation shots, and birds-bees-bunnies romping in back yards across the world — and all soon to be posted with obliviousness in the fractal gallery section of an art community near you. Hide your eyes!! Save yourself!!
And, finally, here’s a puzzler to scratch your head over. I see OT former heckler Ken Childress currently has the prominent lead blurb on the main Ultra Fractal site. Bubbling over with enthusiasm and hyperbole, he gushes:
This program is the most versatile and easiest to use of just about any program I have used, not just fractal programs.
Oh really? No learning curve at all, huh? Easier to use than either MS Paint or Elf Bowling, is it? Then why does the main UF page suggest users could perhaps benefit from preparatory coursework by highlighting a salient link to UF classes taught at the Mississippi School of Anti-Fractal Art™? And I see its web page on UF instruction opens with the following:
Ultra Fractal is a powerful, feature-rich, and extremely versatile fractal generator that allows the user to explore many types of fractals and to create amazing images. But it has, by nature, a very steep learning curve.
Somebody needs a time-out and should go sit in the corner for stretching the truth…
Tags: fractal, fractals, fractal art, fractal blog, fractal programs, digital art, art criticism, ultra fractal, ultra fractal 5, paul decelle, lars-gunner nordstrom, janet parke, damien m jones, ken childress, even more fractalbooker crap, undercover paint programs, cruelanimal, orbit trap
For your information, image importer plugins for UF have been available for years. Check Sprite or BringItIn.
Paul does not use image import to make this style of image. He assembles the image piece by piece using shapes and clipping transforms.
Seems a bit odd to assemble this wobbly critical edifice based solely on how you “guess” Mr DeCelle created the piece. Why not ask him? I don’t know for sure, but I suspect JockC is right – note that DeCelle’s image is solely composed of hard-edged shapes. For example the grain visible down the left-hand bar in the original has been replaced with a solid polygonal bar.
For whatever reason, we humans tend to rate a piece of art more highly if we believe it was difficult and laborious to create. It isn’t a prerequisite (M. Duchamp comes to mind) but I think the view is widely if not always consciously held.
This is perhaps one reason why fractal art is widely derided. If everyone believes (correctly or not) it was ‘too easy’ to create a work, it will not be highly regarded. This is perhaps one reason why very highly layered and processed images have become popular, in that they require more work and are thus seen as better. It also explains why ‘no post-processing!’ is seen as a good thing – it means you must have worked harder to create the image, since you denied yourself the use of certain tools.
I think importing images on UF5 shows nothing more than the convergence of medias. It also shows that fractal is not an art in itself but it is just like any other medium: oil, watercolor, coal … Which has nothing to do with talent for artistic production of objects: So, who does fractals not necessarily is an artist. The only thing really “artistic” for fractals is the production of aesthetic objects without meanings.
Terry,
For the record, this one was made with UF4. Yes, I could have used an image importer like Sprite or BringItIn and passed off the thing as being ‘made with UF’. But doing it this way was a little more challenging, and I considered the exercise as an opportunity to improve my skills with using these transforms.
That said, I do appreciate the fact that you (and others) have enjoyed viewing my reproductions of the works of this fine artist..
-Paul
20080404-momentinblue {
; Original by Lars-Gunnar Nordstrom
; http://www.galleriasalmela.net/index.php?option=com_content&task=view&id=14&Itemid=13
::YFdfkjn2s3ZWzNuRSe83dE+7Aj+dJV3H7G8h1HTMP4d9Gz6df1BtIULumikDPa52f6n6CgA1
B0MjbP2W6vVE2mAZVIRWEEI/h84hjru/8qt/bf+ntYx5Nn32t8dMCxQEExNPt/pudn3s7H2e
p7dLeez6zPu0QILesbz7f88SJntY7qP2d80SKx4ng7P2tez5TLf3/9qLbX8VdfZ32td/7q74
k78T67+8PLIf4gd/qDn3sf3y39n2s79dH3taz2Fy3tY/hV3v58HdzIZxTdnfc/6lPdZ75NHW
d60izHXt70hVHda1yP2d6z/snWd4gb4xJ0t1ujLJ35G4q3vbJNK+D7P+0plsP/zG+UQ6H2st
b3qncnuPd+2L/0Dvbhb4H/o/j3c+yxf4ib337OrP89Ptfd3yvazpz7Pe29R3R4WCR7njDf/5
HP2d6x9bX73o7z7d2yP0dap29/fwZYcjyPNu9K9b5ypHTCe6+VOTN9WSce2/wDn6OH0d3Ro7
Duh2tc3+FP89PsjuczanulfCca/2NuD7oTk1P9/zncq43wNfV32L/U3XudTwS9u4x7e3H9HE
/CAlQdbZzuTuDz+Ln9/nlp/bQRP21t7Y32Vn38BvONWhX90+Luli05ecT7e/2u0WOu/8qwac
6c+x9P/4qdr36MQ9zT6z72fwdWvp7Z/yalNfazP3tkplZDy9Fh1ul8sxE3aYIUFhMZMPv58j
7u80P4/S7kh53x2N76y2sfSMjnh4VBswpzqDOr+qj/wG3KzxPu4w+tf89731bi3c8+tdn/oX
m4XNX4mgFdrff4bVxdf5g7bJb7e48ybo3RHPwt7fu74xw1Z07uhOs9RfLvfT+p0JEZ8w9bj6
n0pixWmvFubqSHY3FrbOcKpyPs5n6WvIsa+ur7bi+6+S9kBOVljflf84631k9skMZOmc61rQ
7P43w4RFnqbGOpP2d/5q6tfHTNypNmZfvONTU1epTfrO9pJKZ4QH0wRTyV9zfZf87FV1v0+2
f0/9Ye/PHk261jaaDTOw9bb/xdutNYKSbu/LFpt88mdrdX+7+662tLiXr3f4Pde1xhrH73Qx
RyvxoWaGtltbeaz5lkpj9ywyY8SJ/2jDVcVwD73s7M19LDWpI9n/7MUi1qJKtQmJKLIKhKUK
mWFElTtKhhYznVuXUlWLoWuUOroCvoaGVQ0K28Kg0/r1cDlxpKdUSKVzJMSukqCJd/ylSaNs
8Dv2LpmzpcthHl0PGqUmLpxLpN+X4iLiRb1KJ3KtZia9iGsQM/ExkMWuZn4FRmsKBJl9fKXU
qXUmwyUKTcSVcLzqomCRZFiatUGhxFqcRDLRGJnrZCuwLLnwlULRRLkNsG5W74GBVJmXFkFf
hiJ7Nw5yqKllSpCuymvgS1eRtCKXYs6gK4/qlwwNaausmSZ9rSGrQwnIodp/3Ij6Y+X2Jj2n
/nrvc8DdDXCvZn7W3nXs39v3u6wp+734lJdt84PO9GG9bNdpc2QTXOPeT5XMH2R6nrGNa/vQ
6Eju6y59jlsf7p7X0v50V/hTSa50waMNM/vyOZO8/sgWen/fNaauf7+Tu71d1QkGPvx8yT3w
a0U0/LJp79OMr8yZV0PrlnIian3i0NWuOpihf/d8glN0WZtJVukOxSGmXZpyqaMpqJ3R/68q
KUWV5kqbbB01UWdxkqraBMNUWTtJ1UzCYKVWbjJ12wCYLUWb5kSJtNBufut23+JFzrbT1sC0
mXVV/yKaNDhbrlKdrrzc/Uedbh/34zV6KXnR5zYN4VVae5EzrbNEtU6qXsRFVtGiKKdrr3oy
WWDZpSX5SOqaGrhqqSXeVHVV3aobp0VvwjqraN0VU6WX7RNtsGmSluylfU7MWDbVlu8KQqtq
1gRadjjqXCyIRrh3n6LbXFcr+pV/0G/d788Hu6a9pVPd7lHeawz6Dunif76N+79GfY6I/kgD
6d+7Avr7z/skT0T3l3HzVHTevLYunKw9Yqa+oj1/jTnXv646bvc/2w92THzvq7hVX2e2tp3f
c16NutG5A80+9OPS9nzuHQo7ncaObx973u3dO4eIY3D36WpSUVGPA3CTUeyAzF3TB+SEaEgQ
DI0ACNgQDI08mhQjJ44NjxsvIhmMRnjQjz7YuioJczsISCe/TUUphL1RRJSpmaEaQoBEaAhG
QoBEaAhGQoBEaAhGQoBEa4gQDI0ACNgQDI08qkQThXyufBkSEBqIsA3BLjrlclSqLI0khoIG
3LCFnXAoxDI5qv/NFUEIKY5B8EgODozA6MgODozA6MgODozA6MgODozMhODD0ZAdGQnB0ZAd
m3IxPD9WqmEoNEYZ0HKL6CPfZ5i2ElinOD1okzKkIIkWZ4MjY+jssgQARbpajxIV8C4MeZTx
uz8shC0ZYEJTbk2ZlMQnhqoMLhzi4B0WhPvsoAODgzA4MAODgzA4MAODgzA4MAOzvWwZoAOD
gzA4MAODgz8mBODLCkQECfkErCf8zUBODjxMauNGjND1XmKsZYpEbi+iAaC0EY0IZokYOX6B
fGwnB8ZAfGwnB8ZAfGwnB8ZAfm328ZQaNB2MgNDYzA2MvSZzQN1q8MKlUZsU5UPZrV4ZGymn
5Tungv/UhVq8Zf08hFTw3fhUL0GSkpRb+QARDQ0AENARDQ0AENARDQ0AENARzv7R0Q+ExmBJ
1EYzA2MgNDYz8KlNjuWWNJi+czmtS/GSqJZ0p/IAjUIuwpVTqJfyKJk6ZdhOkZTJ0KBXgTl7
GltSJnZyBvpz+qgkeUTCbENhJNQdFiM91tm4R3DchJNEVFiMTls1R3mXcaajbJQmxEBRojMJ
iwEs1AzQ5EhHjyLgkgVIaPRMeJYmcMTq+izTJXmp1QoeAOSjoELj3AI5emZBeTkmnWhVqUwa
RbAjjGXkirMqpYzyYx0ExyE8LNZvM6RMbifJj9SGSlZxvUh9S2wnD/SL2LVeu65wv0i9SlHv
eO8LFsXKH/LhfpC7lcXVmD/SD2L5+pUH/SL2LVwy0E/SB7lyB/S4XKZvkbBmD/SD2L5Wg64X
axepCWmm4XKYvUO4XC/SJ7lcLws4Xaxepwb1G4XayepGXm24XKZvUZ8vI+lKsXK8dfW8LtYv
UYNagfpJ7lacZajfpk9Slx/i4XqwepwaML+lWsXKsGNwv0k9SNuMtxvUyepy4fR8LVYvUYNm
F/SL2LFWjG4XayepGXGgf5fe8LItlA+FgfB4XA+lXp4XIVwvIEJEFR3blJfyrgfp3r/gPzUt
M6nNrIpl69R+OSNeLjhjQSxrArwp/AxlQISQSBtDvW19lniplov5DDoCqlpSaSMEYVQtwiMg
MzTZyGk0QUeL28x/BJY7ICu1kKuwDRUTGol2QEYNgI4fQ7mDS0aQyZGkq1g0zMITrBhYPBxe
Ci9EE7JI2TQsngYPBxeyvDhf8ndPB/iv25b43t/AAgAAIAACAgAAIvKBgYrw/QxT/d3MdSIP
+DVPxj7epy2SorWLMKjXyUAQwU1i+EVPJAvkNz2EPMEVfudE4m0Ovk8URUhpLCcg5PE5wQid
2Imk5lTJrABRNkZT+EQKk4SSThk2g9LFxO3NJVlyIg0GdAtF6A2MDi3aQiZGks1gUzMIdrBh
Q+Ah8BC5DEyHIkPQIfgQ+Ah8xfEpe8d7Ps4bvc2r4zT+Y488fK4H83AwPOu+5JnJBvzPNcK8
dXNexDaY/klJ/J9f3NYBjJM/djr2ju9Fc6ns8WpJ96oesz7gnbLcjf/n3s19Ba8Vx+sfWI3q
G9PDT/Tuns8K/9oOu5n7S3c60jbe4sfsevdJ9CQXO4B6w8Qd6yd3m8TJod0lqB9KkK/J1y9/
b6VLamaluYeQzo9qRStojULauaxSXKedKYjEJoTskeE1K2ItKIa/Tt/ccoNNYsM1iNyA60MW
umxDa2wUwzVL+1v6F1M+INjn+OaQt4zpW8y1R+IDGPXtETVLR/+HtIKmYwEjULxY1S8CrjiM
DmYkaJyVLZx6oM3gJnoWyRqlMbdUOnBTmpWyprjycNTN1gpyVLV+6oakmpGbwUzpWqy1R1ID
mKXt0TVLdl1R9EDmekapHrW6XYdUnZw0jULduaZKWHN5GMzE1yMStMZrjm5MYmM1yMdd0krZ
2pGMbuaZzXHtj0M7YDmdO1yWuOaHZwsXXn+Fevkv9wq/6lufB3GRRMZ3GJEJK/KfXkJLC0Kf
rlO5rHTvJyoFBcXEcXEcXEcXk363FBu2+SvQ/vY7q7/xfNds913b1/fw3mf5ryPekn+28jfq
2Lzvybyfy73HvMf8y8xLzHvM//uzmhJvQde/7jWV715zlxXl+1XTelXlvsfGmvSc6fI3+KtA
duK8o/xOFGmgIUW2sljS/jBK6LrlBJN6YYHwqkeDDV+xw1K8+ydal3s/QFZwLpaInJq9m97F
1LpeItOqleDq+SCRQUFSrBkWDItGQaNg0aAp1ASrBkWDvSSrhAAoSc9TQf8bffO5a+MsaHyn
h/Bfl+WhPoXRWNAQIAECAh8HDQImXiDSz+BrnDSSOiJWlFSJDhoCLEDXwpET0120o0qKkQM9
9jDvk999EZtiqpOVdMDcDkpsmgIqgCRnqOmxrBiFNC3YrgCZKLiqIQGD2gnOrIip8PaTFg0i
KAIdASHg0BIdASHg0BIdASHvmLgDev8nGpHOH99eEsZ3N72v5U3N81vbkH88MP4ZT9F3bj+5
J+ybzdj/6ztfy5j1SKjLk+qqeL+KD+JzI9sWEkErFpgwlc5w2HF7JL63osX4hh7MATG+nESN
fxenjOPt4v49tBRsCqDFgYDI2AiNvuJ2Iyx1wi9UiU4bUr6TEb/FkYXtQq7lvCmGuWF6+JBH
zV2Ubp1UhTzk6XZzi8gsor4qHKmmVaItmQ3TlxYBRV9d1EaBpGnoiEcIaU0QouQK6zsmCRlm
+ypZRYr411xFwzriiKSBqIFoiUgKSBqIFoiUgKSBqIFoiU87w02JRD5bcepAYIAGCghAYIAG
ybtiyZOvBpI9XJYEno+WuRIgTmVUew3tQ/FVQkRR9tpUPXlC0I+cYhYth64ZA4xQnSFsRAbE
wGBsRAbEwGBsRAbEwGBsR+XAbk/vVb/Q3C+/BynHgCBoQAKEgC51ZchUDFilY1ahgHLCIWhm
rMCGtGKkJiaZicAIWTYoEZIOTslVxkbt2wu4athalCjdKtjmOR3KpTmJnTalyJI1bQq3gUvB
peDS9Gk6NI1bQq3gUvBpezn8UvJBUB8UAPFwTB8UAPl3O8UUtBcwG2vtWfdlwi7i7+9YZZba
N0pDIWu1IsxDiSJFU3trEgiCooAKKgiCooAKKgiCooAKKI6OyhRQR0dAaEgGBoRAaEvVoRQv
lKSxzRgsA1S1MLnVrOtykUj2qs2YobQESKlpNVwUMRSRaG50K0KiNBGuhLkGlQpAmCgpAYKA
mCgpAYKAmCgpAYKQwe8qJYPoAvCwrA8KAvCwr82ooqSppwvIQMpWPAmZi7qggSY7CWkcCpWg
eQRAeAyJgcCInAyJgcCInAyJgcCCwj/eKtpf7HWtdBDl10PF9m3jrfey5Twr5TDnIf7hV/1L
dxjaYXklJX88f9NYCJe9K2pEE+TkgH4kl3Kk+TiH78ua5+Ir3GsZr7j3ErXeP7Hubgj+nh59
J3TVmKiURly5r/17Kd6xNPc2PWvnnkeZoxGMd/UQHt/gaRvaDjKWYDJtimM2B1iOnaRHpGJN
j2rpO1imrWspqFrf/x5IoZskiEVL2I1iNWtYZqV6HeG0MWmBjNStY5qFP9rDXnCeuBjPRt4j
Urgo9OL8ccoNNY8M1iPddknrZipGMRuaJyXHFj0MxYDmYO1SUuOKGZwE5qlcqaJrsOKnYwkj
UL5Y1S+CrjyMDmckaJzVLVx6oK3gpmoWqRqlKbdUNnBTlpWqprjqcNTP1gpzVLd+6oekmpHb
w0zpW6y1R9IDmOXtMTVLTl1RzEDmZkaZGrWmXYd0kZwMjULTuaZLWHt5GM7E1yOStsZrj25M
Y2M1yOdd0e1ggXlzr5Wmn/JpwzR9L7168r4TQpVTeCq+MqDPCFeEK8IU4RowjQhHh6PyMd+P
dnCPeYT39dL+6drxzhgwLBhXCCvEEeJvWDvETlaJiUTNCtkoDhYC13EYMu7axrUbWlmQnkhH
7jMKbt+TjKtrYjcRYZKlRxo6K9nGlIKSoF1IM68mSjK2ogpaqUKYSGrS3oxnxPufXSpiSSq0
FaCNrGjmbjnfGuUr1UelmQjioJcDlxDZyE13Vhp++bTlmQja6sa1WhmRFU0EaQToBNhG0EaQ
ToBNhG0EaQToBNhmPJEP4fqIe8X8OGs4r/YnTZRu0AYHA2BgdAYHvZgd49RnoVMh6uQZFxYM
SVNUHX5KMSucWHxGxrQZZepI1YcI5878VnEmKiIoSv3VKNKJlwUCvkB0JuDOvGsjhOorXyIn
GmhVj5RE6ChYDSWh1x12BcQ39nE+tAUHA1BQdAUHA1BQdAUHA1BQd8HfUHgzB4cAOHgzB4c8
qkzhtIiOYef656aYNIMF3ysqAxCRt43Qrd3TjLFGvEStQbIEptCaDtkRtWfpDxLJzaiQOyxb
oDII0yK8M0eCFGtVH0XuRTs+DfNeGxIAxd88SysWqHFisCXjEUEq0fGyFcKxIJFnpeuGyQUn
oMkA3FpiTEWjkDsGArBwaAsGArBwaAsGArBwa8JBrRfW1SdPhnmR+FT34Lfsr7HXEYcA+Ggv
B4bA+GgvxrT+GVijDFXbCUAmNnOCtCXTEqANG9CCbOwDP/BlPrXSh3goCqDLNuPPWEuRTrEF
HWKRGSlmQOrw4apvwqqsVweYkcumJ4iokmK8OcTj7GwKiOIiu/vaxxB3SI+a8aIDYixphfDI
QOAxDQ8AEPAxDQ8AEPAxDQ84PsByx3496Yx3s5AAdAQH/uD0hAgOAoDA64TAoDZtqzx1UMxX
5NE6c+GxuuLXyrELHDR/QsD5mCvCWt0UJlXJEVspxUvodELKH90WCS2gIiqYOpcqVJMEbtw7
QGpXQDpcj/UuCoDRKsOEB6FkkSwU1SZlB1KIaKGWMqK9YmRZ3jPKQKOlp+FB+Qck4khFpmQ0
qymPjnVgMdmGENGnKCVJUE3e7TmnQ280PwKdnmxEuiBKD6SNoL1guUD6SNoL1guUD6SNoL1A
WJ9sS+f9+nAWJgVCCKEwKBsSebxKxQUha2ZoSmmSOFhtSQhEgDEohMb8VEYoESREuMG/IN9o
XMhkwNzk6JypJpyNzkPLgiCooAKKgiCooAKKgiCooAKKgiy/Soo8f5M1pOUH4oAOKgjC4oAO
KvZSuGhkT0WnD9RGBXbQM1aJMk+qXaA9A1oVGOzUryiMlkBx2njMVLbqTC7FqUWLSUuWLTC9
+FpNo3MARBQUAEFARBQUAEFARBQUAEFAR53OIKH3EcvEQUAEFARBQUAElXhQUUFRiiM4ztgJ
MOvur2fZ8dmehkSZaDtRj0VoUUlUEr9IStx5tPXZqRLxwnVmQInolUj2qCVQVCVZpafVDpWb
mRGqorMuX1d3SQOFRST/ub5r+MuqTJt8vnOzgYtGEfmBJaNIwsAMLAzCwsAMLAzCwsAMLebX
qRcuTgWGDAWgKNCAWAgFvaBWQFVC7jrh8QoP0S0EuhyqBv4apDdOJDBWwQ9IN0HapCrURo1q
AJMjMGRIx+RrN+XtKt6kQgwdv0KEMu2bcnby0LH3hbubmSkSoxyEqnrGLVO3JdIkPs91PlQ0
UYmPOPqGlHaEdHgUCIlASJgUCIlASJgUCIl87MSJ/pV33twjLBoSAqEgKBoSAqkXloSMFZHj
N4GNXVtui42FtHjStkgRoJp2OrPMMuypoW5E5KaiZTdEZILT6b/uxMSZon2UBOCjGbmusQIq
kaqN2KsR4xE7hb5zJpZaRSxDjgwZMfxYpCbETcPiQ759KHpaZDz12kzMtenAukrdLnZyDoA1
kpH+W54TgaiRQizlf5udSQFwmcNDgCxhjpH0VZbtxL7sNqHqKvJGz4casdHV2wbciGSEIvZy
puqSCLh2Bdit2cdEZqf15alo5OfngmTYE3otlIY8FNH/5Lxa9GdNrv27gOlD6UOoT5gOlD6U
OoT5gOlD6UO/GAlB9EYQlBZcDoyAqMvepywIVCgFm398gvyB/riMYIyacaGFgGJoKUSt4X5q
b/BJF2IUiK0aUWSs14EO49O3zrwqxQscjgqEen71pCTiUVrRBPmWh071uHzDvW/Cmm+LEwL2
G9vHzUUFzEROAVDQ1AUNAVDQ1AUNAVDQ1AUNAVznWUN/5uVrX8Fru/HBpGQqBkaApGQq5v1e
ndNH3GH97/qoy3rlz0z7XwLiTOpirK+knK21z5aKRuWss4LhiSpi/0fme6ZwCgZAoT8LRi8v
ZVyLw2LwgBYbg+3+v7+5ZqGFGRqZKfV4wr8N2CDI1MXsKbqAGmBws6J7ZzbFQDQ1oUzkLDn1
PUdE0Brh1SzMx0UkBjXy/oel1wGXrIt6YRIQlRALHmOiNstscZKMjKtnZ1pGr8AqNLGFlyTb
oOxMAcj6EYFp9G1C/fE6mZ4SK9iIpy/Gj+R0bUL7+zbeAWA4IpSFjDiDiebNJVQ4cS0UlJOV
wXmpHmjSGv8XBnS9IVHHBwZRmPdSkSj44Mxl5s5Vf4RYcOpEqzm3Os3Mzm6p3MOrnWkZTAOD
gzA4MAODgzA4MAODgz87Lcm/PX8AwyAsMALDwyAsMPPLZtdUZe9SwBcHopBZojLzrXFw+mRh
XqIrLJosNIgSJaVzgK4ckytfzHSgzssROvt1CdmFyr4UXAC13WU1WQVbBVtFU1WQVbBVtFU1
WQVb5ZLYj/3Le/nu6Vf/F3+7Hej2ETM/s1ayp+5y7QuYYMyj94dUfyrfWIP2m3RBMzTh8IZV
adAgPA4DA+AgP+ythH79Skp71veSGvKpoa3Bmzhlol06BKRJGodFHhl98GzfWt1E21y8Tjlf
TjP5UanYZJXV0D4bwWKZWks3VuKMkOtnoPUTWHFtfxiJym2SPpyEk0bntdtsZW1JJr2IJ3TR
HJTZvym8Q6FYyGcFod+Qmt+Q2d+Qut+Q+d+Qht+QQrHQrHQrHQrHQrHQrHQrHQrH/cQiwR+v
EGSO4fOEhrv913e31f4qXbu8rmFVvZVI90ygz5pifaRw9p1h2f6B5/QOorz1kx68htRvMF4M
paYYsqKGGnVZcG306pT4ZeVblumxTf8gZ5H/XcGElj64Vf97v4t/4rIoWFoWFAtBQbA0mnlQ
bcDg2E9SrT2WSIGDxiGx3nyGcwjpYrVGLoJa22BvRfQz8VcKTc3NaBhTIfjvoTyEGDnRR2kv
rm/yZhSSnvdnJyZ7UxU2MlXRDq4LhIbHniTFTDrrzL1jAxGr3PIVhETs618ZCKbMGId5IbzO
PdJng8BZTU6+05x+oUBynSVaZlRkvaqdUmA5Dalj8G9qJAIuFIuFIuFIuFIuFIuFIuFIulXk
ibRH/VrkqcCIiGARAQEAEBARAQknnVVFakMWihkEW+TSEZBMAjrEcuLkGomlgpYnyuP7Euwc
ESCVBaXMHlCraR8MMTABeQRZNuh1AXQEBERAREQEBERAREQEBERAREQE5fTiI3d5/Cp8DS5H
ALBwSAskXiwS8jglI1GVdqk3Kpu89p822UtdNHGSGR65KxSM8nKpsD0KSJS4Nb1Pca+0yWny
lw+pCQ66c8xXqVshwgk6Zqiwy1YFvbQu84blV1yXT2qGnmYLb9wn9LcrK20WZU5sFV81eAJ5
jxgyE1kRS7otr0sZ3FHsUNFpkqd72d/H9BqVYXFcDuahdZUpjdWFpd3adrTSKMrIcn9yNsSt
jVmRN6iyhy3zHsVAbFwWBsVAbFwWBsVAbFk3QfOl3Q/p7u7hX9N3mDf5V/tP+IPnvPZopTRQ
vMQvMABEQABEQf5hAKtm/jjOTfgog83AJycqvQzGKoSUxRpM0UFaZ7NIDByM1ogz21KuuDQB
5naxObbXhFUjKC3aqbtwI9IyQTbw8hdBnlPqsjAENzQjUga8d6hpwHqWxaObRfXaIeIdMUqa
MspVcLOvZEeo5kkO1jdGBHy36AQ8Bk2KTE+RshmvN3GOldBcs8seDkVPXIODxoSD2OVMsSHb
EVoTHtZLrDDTccjhu+HfJUbCzOsBRbrF2HGrRMPp7jJtbU/h2pLmInayWhqPDq+Mo6zgqPDq
+Mo6zgqPD60Q/SUoT6Xt6x7fnDX5V/v8Db815xMBSMgEDIxASMgEzzVSMkqTMO0hpm8s+wW1
CXiNzEilWHNHNfK6k6YbHSGqURdL9iZD3ie9WioYw0rMH2yK9AG5R2EliSm+6w789dpm5KcS
IvuDMDvNr7vSA2t+KcHYmVbzWjMySdkZyWyzIE5ii8fqdxIbHaGebWr8u5roPoSyf6e0Mrs0
UxaE6Jzkt8kqZyWuRn1WXODJd0apGAnmKXx9oZymWPtIKaq2hqVhe2MZTjyfimsqU0sDozQH
IRiR6iylO1vn65zMfsqOEn2F98Zmf8rznJ0BlKG7pzMfLOjKYPcG2w87kvyjJDNpised+scL
aL9IdV7KJQsBEbAxGQsBEbAxGQsBEb+vDxGNI2AiNgYDI2AiNvoI2oa8V2jYj+QLno4ox2EH
ALUjpEtKbYTrNdiZxuYLuX2+wC1IV1eSN5c2oZW7LWWZAx4NkGckN2Brh43m2sXJltoKYmCQ
jYDm0AGNqWuXV+CnMTSJ/QIN6qmcK5BVT3L2RUaKN/JmqyZLbl3D50wKdhx/8EKoZOmGWzUb
xTxueb6NKLTozOCSzcL9NSdjQ0oq8P4duvhraEhGV9YIU2iFYi6UaIjm57bf0Xw5kGCpRVzX
NmmTt1WpHCpZaT29lBApBQaAkGApBQaAkGApBQa+dCSzXfXO6mbeVJTn+L5H9AZ4Eo0AKNgS
Do088NDn604BD2o2DmLaswXFdAFHBqpxcpAvgcRRlHDI1ETuYJTmKCMh7F1sAGGRq5U/gOb4
GIdKgaqlOHZLSVZbMiTTwpCGDXUYYDLphT0PIjnSRRNNF5yspSh4UeS2EkOU2kMvGmp0gUeK
NTTPTbQ7oUea2hDbaDLzoUeSI0oDpdrPQlceK2wnxDU9G9h7SOPFbJD2u66hPDFm0dFbZdT6
Gl0Teu2Exz9lLkmULTPzGej2wgx7dJtns9Mbyz2+6x0eGGLdar85cTIWSNLhOXIOKnnqjRtJ
uvuayWOPv0Wd2EMbAzGwsBMbAzGwsBMbAzmfnY2893d/MgNvyAkNAZDQ2AkNAZzLnua9cOM5
4SLFPEltTID0aDnqyHjUWTDcR2OhHjaU1ppVca2rwiUg1UL2ul9LralSg0Dg1MJAGW6P19bX
VnJsgXBX2lrSpQPgVz8toiZAIVonBwamBLRdoVSeohFomTb0dTDJ+cTsRQrggJI1+lAg1AYN
AWDg1AYNAWDg1AYNAWzLPYNou1AYNAWDg1AYNvsg1MrAvuVpglWIyk9rkwnYwktbDJ4YXksU
z6+RDzAqaeNxDvay7ASNgUDI1ASNgUDI1ASNgUDI1ASNvgI1g6VDI1ASNgUDI18ilUjejOgk
oqm6fPZ9qZmMYS6W7yeErGnw/gDHX16y37zqZjmkEQ1AUNAVDQ1AUNAVDQ1AUNAVDQ18sCVT
BTzf+h8o6pw0AGNgRDY0AGNgRzznaKs6Qtt+kDVv0RrrKghG0bupaZo1EObnqxihtM0wPsgY
ySKNsZlGszIwMnwOwV31CPIQmBkZAZGQmBkZAZGQmBkZAZGQm5ZNZm/n7e8V/tP+IPkfqcdC
oZAam/LgmxC0MANDQz8rAamuwc5gzClW/MVRQoXyjZ691Gpgw0nbTsJl+mEX6gLmuR7R22b6
0etDOTp4+alyMcxUu7IXQq0BoZR7ougUo1Ip6Q08aG+kQpgKENMdR0HPfRb4uYkoAo+SHMb5
E8GBmRJgeF1znp7Y3UTXMdPgGeYWxMZiywcQL5eRJIuYVp9Y7DUPeGuCI36nWyG0vCLTBvzu
jLXxGBYiMs2kHE/MvHIpnnrTFTrt5cfPSmF1H59uASXO3U1ZlKYkLLMCNxewM53llxF3npKk
mmko1KsMFAFlOOGAxAQMAEDAxAQMAEDAxAQM/cAxE/tAED0IDAxAQMAEDAx8MtjO57JxkDYu
pujSQwl4hdBaFQmsZlo07VEz8InLmsRHluErvUAayBlXCiG4XA+FgfB4XA+FgfB4XA+FgfB4
XeBifhLoM/1c8Rv67KhFgqJDowAKMgCDow88kCTcIEmWx5lvmJ23Ptf9skBp0Fobp2UYEQGK
Q73LtL7xaHeqYZtI1MQRMZLZ8CcyzsXI9Sw/tOadeLGpSqxE6xxwlY4aBMWGleZb2zkJbp3u
7hbSYOUrUyS/xejUlqEmwh2UiZvO+d5p+PNpItbcyR6UfO7UO3MNTvA5wAiM5xnZeWQ1jwoo
XJ5wxkcycZDizA4MZbNuQJn007eI57RcpH3UuAdGQnB0ZAdGQnB0ZAdGQn5lNdm/+13gMUCI
ZASGgkBIZeuKMG3oUUauoRyxtn//F5o03PmYbtKdwlcmqtNRfMKvlO1ctLhAz1Ol8Ng0jybJ
R4IM8j9itvQpRVlhiYYt5M1RopUcW8Brb6arlkZmS4qyhxUhwZEamZiCJbqU1ZURHA0AANAQ
DA0AANAQDA0AANAQDA08bOgGk5SAQDA0AANAQzzUANhh1Qmpqe6iUXaEfmwsyU72BLL4ZczI
poDi2UMDpzMpKl9yLGXfO7ojp0I9zoaJzzebvgg+wZUhkumROD5zMPrs0CqGL9E4Z4pxoTZN
dDQhOzikFbaQ0jmhqiFaMMm5D+NybpKUsyprta14CKml8aGmBTL5zxTYS5w1CGMgBDYwAGMg
BDYwAGMgBDYw8fQ/w+i38+re1fnDcBClBcYAHGwhBcYeuyhJOiDzkIVodF/iAiZqv/I51jRE
DTYYB+dW01zjzfYF+tqOHrfXx64WPGOJcmRlYmws8yaWr5ZUJmJwlAmCjhzmrzmhFamFmuFw
lalm5s5FVlxVYmFQIkErSHGWgZCOvLFJrytXdQWKzMyszWlzHRrMRe6gSJtUdgaXGMQvMSF/
ZY5lp8OmeOMRltKAJ5z6tl8LbIIGfS51uoxF3FuCAxAQMAEDAxAQMAEDAxAQMPbBxABxAQMA
EDAxAQMvkyYpwMBksTzYuEe/pOFdpkz0knCNCETJEYO8aBuiuGIccEIGHToJ7gxLlymWzTmG
BixOl8TntAmwIUMmWuQVgMdK/bGxiRqltcJopMerVUYjfEMm52uN3mUvpa5l9acRJD3a1JWI
jUI8E7IHJUZMNtJZEbrdi8hUZWud7BqYWfud7iosQm5nJ8ORGNenWRej0svPppmhyoZp6osk
bN1Gd+MuUYhEQMjkNj+gkBeWVcXQYAWDg1AYNAWDg1AYNAWDg18FCsGus/CSNgUDI1ASNgUz
zTSNpR173QSkdgA+IsRYtlslx3YSUMtVKRGV2ftS3QysLMlSx/1eqPDtDPnSdlph8QvbFhpk
+StKwS10WjcaU+LNpmj9KJKl4/nljXzrHODzjpTVI5ZZQ048YqqSmzmXxZGWkZWUri3iomkX
Tk2uA2TfaNpL5SkN5l2xUaARmZCCqQFpvbMNNdJcVA8FAfBwXA8FAfBwXA8FAfBwXeS4L/1r
u44r0JQeBkXA5FQeBkXeeSehGReRXYe4biUZYnWq1Gj4crRUmRX/OS6zS+iRRTD2yIWLGJQc
RTO7zap2Iplh4pcYqH0SlwyIyKTJsjsNSPNTFdq2rrHyUpJ6lzWURkHDVZeKYdKVjGjVZeJB
+UybNkryU5a5sFZ6zwCHzs+P9OtNqKolWRx5JV+yiaN8elwYpM+06oVS9dum1YDzbpkJkHFk
OIqlyMIblmzLZBzlp3DQWAkFAZBQWAkFAZBQWAklPngsEBkFAZBQWAkFAZ55JkF/IILT/+/7
W4WkiBbrRRLmWkshONE3i2IVEE7uimxuSoFcx/tIEGVXV811ZqXFHpsFdwaj+oSIQobF61hd
QpQMGd+iIcCb1Fslebdrs2WMN1+gDpwYER9M1JhGVZelcypimYI0lpSKskyXSxfRZ2SMLng5
cqlVBoLA6CguAoLA6CguAoLA6Cgu8ZI0lAguAoLA6CguAoLPLhuEGycZetUZviw7s+V8TmSR
LozsJHFJw+aRWRvrKN6jrfvy+C3/lrtu5dxDF6yLmtIAUCv/U3q+s59G6R18lYsmqSpdz/Jp
ovcSIQSyKpkahjfct4l7z2swWM7eoVLGv2QlXz+IWGV3krFMGdYcns+Uzpm58sR3TyShgPYc
y5Wnm08/MO1j4CqcQrVy1Mugy482gBoYAKGgiBoYAKGgiBoYAKmXGoY8AFDQxAUMAFDQx8Cq
Q8eq80unoMKR2fK88dDWvEY/JqOSdt1JYBG0Qk0LTXneCM1E6po4EldU7oeeJc5sFQTA8FAf
BwXA8FAfBwXA8FAfBwXA8lPLhv4A8FAf5zO4LOAfBwXA8lfFgvYHn7RFti4Z2HG/S2Hi6XkY
jpYMZyR1TD19iNF05oztDDM3KIUYCC1ytbg8qQMkS04GONldx7UWJxbSmh9aaJUdSAzEiKL/
Puh9a6k3acUQycoyu1m6qftSE8mgjMWXN9g8dMWqZqUwkIeUGHyWxHNRvNpFoGtZ2uEgqyWh
UWniiaJbp8ajTFtWzQ2KRvW7NEJzMOnzYDquZxa3mWGiSWlF9mUIYju0YyKTvtAChzmJNlcA
xCQsAELAxCQsAELAxCQsAEL/yQsYBiFgYBIWAiFgY55ZqG13kptCwjxNV6c8w5bYJQRSuOFs
EtSw7M8CmSgZULkOqVOl35rtQaFp8mQsTjKDRr8EYVSAnCwpAcKAnCwpAcKAnCwpAcKAnynR
4UMAnCwpAcKAnCwp88MdhCjSXolh1G8RKR8/MCxyiI89G3o8EK4d2Q0SFiBOtTxVcVVaErFf
D2SZ75UN+GjYtIppSFwTfpdpEOvzHtRlRJFsFfISmC6gRcXWCTpABwns6IAvAwLA8CAvAwLA
8CAvAwLA8CAv8bN4FCgXA4FAeBgXA4lXOlMXt1ZLRBLt+nqoTGVxc1q8XnZEE7GYdtk56NKT
yu0y+0HSUCTPBHp+sEqvrXRUOof9wajbMp1RdKtIfnG2UiIJbnEsHVQG04yzSFujwQYa8Tjq
PLJj2pT+USaY1N4DuhsXSUMocWrKtPvBpA6E39wvychq0eqcpsaVMqH1Xop89NNGTeOIyFdG
LRmgy3bqtYqOf87cJplLFzjxg1Tj6QRZbjMuroidtkvaiskK0jTyzmqzHvKX0aOLf+Q7jeuL
SNA2CbZkPmTnxj0AL9JvDAXAwFAcBAXAwFAcBAXAwlv4BuoBwFAcBAXAwFAc55pSXoRKdRAE
YdpCyFrkoNqkfoSXk6ziuK7k4QpukMpUO48gvyLxQqY+GP0TXxWkkKK6TD5vUypIvgqwqqSo
ZYRydBvkWuDpHp3lcY8USFVeJXk8JfhqEwwAMMADDwwAMMADDwwAMMADDww87GGGFwwAMMAD
DwwAMMPLxwYGShZqa1Wow4iBOiZaIFmcEy+QSHE5qYjWljcmOtjUz7Iy7tav0DqtpomMRKYH
l4R2K6Hnk+JGdQx/jeUiH58UOU8QUSoJuauESObKMiHjADiT/pyXIK5Mk2F8jAyYzh0Xy/JR
AQuozw/jdEQGJhqUahzU+G7CMnR8YcOtLZD2aOV5CEZIvdMPmTwV2d+tENwBKGE8GygIfW0z
N4pBYZoDatxl3wmKqlKADQlBUZAVGQlBUZAVGQlBUZAVmPDpykAUGAlBQZAUGAl55p2YUjoy
IlMEdyUpyMiGzSKEbkxSFWMno6I58Tp4ko0hvUYx8EAYcA8CAvAwLA8CAvAwLA8CAvAwLA8y
vYwLRAeBgXA4FAeBgXe5oGGfMZTGrxUoUMVoTtj4v44MbRp1CVlW2GpHSghTzJvnoYJTbybf
TqwkZEBml1aWbNvnGVbYW3eksxmCdGmdS1hgMGOxjZURiZeOP5TkRF4/tXLMctrxnUWTFFjJ
GN+QXGEl6z2othsoKQWoAPLUL9NkPvLy2HAQGAkBAZAQGAkBAZAQGAkBAZe5AkJAgMAIDAyA
gMAIzzSgMpxpn0cYImW9FZIPmQjURhvQLrc0j4xcKpdK22EuCBeMgHD4xAeMgHD4xAeMgHD4
xAeMgHzYeMewjB8YAPGwjB8YeWyjJOs9ULEAM57MYJXQ3Xpe5e8sR6DRmuGksUaYcayRqoU7
bLhxH8J/Q4LRr2qIjJIJClW5jWbwOMdkk+sUhSBvDG3nks6gxP1ys1KnO466u2CzF5tkuMtL
oSOtL6HycR7957Xn0VARBdI67q7vpS3XyrTGvTqjxed2deZCDMXAzFwcBMXAzFwcBMXAzFwc
BMXGxcxBmLg5CYuAmLg5yzSmL+Rtmapc7mSavL/Nc7wmStERfwV0dSk8mQgSO3omSNFJtxHT
CWhgWrjcBfZUXSiUUhAQq16f8q8tdoRdJpaM8apsxY1kxZ6loShBjhISZ8SvXKm02oLq6qaM
CDmKKF9uDgo0Xr9xQUb2FsCYwAGMgBDYwAGMgBDYwAGMgBDYw8vLDGDYwAGMgBDYwAGMPLZw
4GygpF3dtq4S6oPFijQxY5STrVJFv2mcYGBipy1J65sRS1lkOFCMm8tCpYMWuWNGaUFGRgZB
WFJIdXorROJqgx7DhQyXM15dJrhMRQgBEYABGQgBEYABGQgBEYABGQg5zSCMEIwACMgADIwA
CMPP7JS6hIYkifiP/lVy31QiEVwYDk1VroJugL5SJjh6lAToWfWcjYuod+ELSGpTFlDmn8Or
doqXqinJG3LHhAyFgcBIXAyFgcBIXAyFgcBIXAylv0QuoByFgcBIXAyFgc5FTboeV1SpoRFr
rvnNLoX8C1gaNQhVeCpV2R6eZR5fJ4qAG0jQxMFPdx0JGGDl/SgEWEPJKGKJbJ5oqSsw7Hhi
Ryppcw/FTTOJzqMjRxISCSA84UJdU3lUTJpwy4DeNJVzXZmQ3XPhFUMLKCNSiS5jDbM10Btz
4iJj2f2cISgEDIxASMgEDIxASMgEDIxASMfBTi54jv6/N/sGX/2Le/TpCmpjSQlBUZAVGQlB
UZ+yjKTonKDdYC0QOKXTwkY1k0jkJHNcLE8z2pMrUixXXTCpy1abJ4lSI+VeQKOEPjRJcOGI
Nml79qkd06UPPmslVNuwGOx7onGDvJbFX4sDyKYGt12TjJbajVC/FLl2pIHDzy2zjh3/1klq
Y7mbXOyhFQW4ssqCSxCgMAIDAyAgMAIDAyAgMAIDAy8yDIjGAZAQGAkBAZAQmXSAZ0HSOpfI
5LEZ406xMqFVv0QdQLLOSiMpWR6tguxbTWOpkGpQmiMT8pUBIz28Y0HYQEOH54NpW70pC0nR
6j5kl5vDonqswj0HTUKFOFyJE3CtJbM4GJPmqIXo9z/pi+YiVwSFNvkoKFFao+YimoybscFK
OPlyzY2YPJhyZpoOqMKlrgNprKKrlTQtTfiRSdM2OADDfusKGIhti26T5pVaAHmsteDFItIi
HrLkfsGlNOGDzEymdONJYYUqokwbc091moleMHGlzUIFpnfFKAxAQMAEDAxAQMAEDAxAQMfB
Di57v7+X9XyPyxVo68CCMgADIwACMPXrOv90Xoz4c6R71WneYF5Nxh9a0qcYvporD2CL8BnX
FYjInV5Du4IUL54wV5Y+VmyWLEz3MMMG1inyx7X2rUMEdpekEFQLugh4m6kUTWCkKp0aaIoF
nx59JnQaZTTLkWcky7URp81kdeFcq0GkWsRf0FdCDDn2aSUKpHTax548ZKYLjAn11DYJPFqU
xgUiZcjBsswGvRFkJ/hEWkToabRDPt5+e6ElzNeTQZzbPxWnxo9erbEiF1BLpckz7CF/I8eI
4j2RMW4uTuz6TGjPw2S6kiMdl9Z+JY5eiOlUGPVQxNNC0gyCosAKLgyCosAKLgyCos8sgyCq
AvgyCosAKLgyyLoegEnCRJjXzgSUcC1Y0UaMvFt2ETkNftQKkSBbyHDj05yE6lsheby51JHN
m9SKaCUqYZwTkK7kxMG+SZ45JXI2lGRA7CwuAsLA7CwuAsLA7CwuAsLA7yXQYXQV4FYX+8D7
iHYXA2Fgd5XBsL2xYXieb0wqJRV1nifAyFuGbQ1QwHmTRzlvC51ugPF0DAtMf/MCwCHCvKoN
2dZiASLg0CItASLg0CItASLg0CItASLf2Ta5rvLHqyN/8ykIUOXAvFIzFwbB8WeOlMRRppPP
s6t0atPauE0S20QILqKQCx08d7SGdXR5oERfgreHJjVMNfbRjyZGX7WCxAZsKrMA2IIdQcBE
XAxFQcBEXAxFQcBEXAxFQc5LLiLojGBiLg4CIuAiLvsSsoo14KAQKBkGUGTIRdtpmKDmSCFJ
huatcdi1HjDJxQaF5JBaTpesoSxOmFCJmU0miap20SWuKxmDS3NkETyGsm8NVlYnTqgJaJDQ
xAUMAFDQxAUMAFDQxAUMAFDQx8FNKG0LjAKGgiBoYAKmXWJbUV/LMUFjXZdPJDmYrYvMiBTl
5ixvrpCDmQKQWvrYqNlMBLp7iFHJgEYwAGMgBDYwAGMgBDYwAGMgBzzJGM//yGe3/8Vl+Ktw
jBcYAHGwhBcYAHmnt9U6hgYK4PCBikw4jUqkEQj4xsMi/kK6NuQaYNgxlcBr1HFTFMKmxAZc
RVoIwlipTR0DgMAIDAyAgMAIDAyAgMAIDAyAgMP/By835QXARGQk5zYiMRQkBEZARmfNIyE6
JykD2VwR4Txz2ByAVC3u2JjscHQqVqdJdPRmspnS+p8uok4Rc039EZWtVrUe4sRqHJDHjvSg
GVSUJdURkji6BMZUHiRvWF8GbJgbj2ZSWySxeoMZbrQhMFqDGy7dRmCQPVmc8oGXSnipUZMU
kTky5NUPWGeSiUanSHltrW7NJnNZHwlJ/2tmKlkFWeKSRnpjNlWOtJHMKDHic+mImQhl0AUN
L2w5tbiqlM5Boay22QyxnNOdqZAqmV4X2UcTAVDQ1AUNAVDQ1AUNAVDQ1AUN/bhqRY08XKh/
iSJDo0AKNgSDo088lSzQINE50WVQTcE8eX0Z4/xOCSTOcZnu8PFINGnKa7peY6M1lDHPy1IG
aEkGiMl42lPCNiNDpi57hpdSo46QkMeTKOCNDxlwmck66SA+1jGTYEZGSb4c2KE49v3nCpc0
+6RcZsMgBDFNmSkoWq8RtjwyYCabk0BfBklNQBmKTYIVGr270KjOWm6NeV5cheIUGbM5jalr
05vPtwQoM2y8UKp86ku7YXgx4CWtKG1xz0HM6gKk/H9QVz4iByyTrcXwKPFoIl3OAEDrUIXi
iBVhthlCBfw42AEjzFyn4JvgQjpMpNm855hoYcUSFV+8Mfx4l8UAEGAhBQYAEGAhBQYAEGAh
5LZIMoIyAIMACDgwAIMPbhwQqhSlxXkITIGSJyNC+SJ6YmCyeWK6sognpizQpHycxxlWmoOx
kHaGa0DZvIgPUEvVDmgx4imuW5kwehj93aVFcGRvPk0huCijotClhbJUeqA0xy1v4gWPk9Cl
Ifs8PM4jQ0SWl2NC9CF12yBGxW61OTk/3hoXogS7jRnzJaRxoSOf0NE9yCbdJVKZNh+tL1Na
32WTntFUN+kX5HqHmFjhNp0J6hRo1wQw27MmghZFDsKRKaIFmC0tQwG97i2SOrZUBfi4ctab
2eCdmVw9GbqwrhxFJXswS/SG4UjDI43A+NgfD43A+NgfD43A+N/XoA0893dPA4AAOAgDA4AA
OPbz1JaEAnTMEOTfwacUgGWMgnH3KbJl8FrHCyhhio8JLxSvosBVdytx2tNrq5QFGhzZx2sK
qiuotlUlRI0YLBbPRTyMEnzcTbyFp7YCSpBSpBoYAKGgiBoYAKGgiBoYAKmfLQx893dfVPNA
GDgxAYMAGDgx8cFGjfUlAmsmki/ndAsUK0sqkOZIrLuDzGzaDrbb1waAcVDHsZVN1YGV/fJt
L4SFWR7oomVHJc5ehLgOjK9vUl/UYHDLF+XlmLsuhCCitOkTrAFstlC8Fny78evyyfT0MpOl
hwXcGbQmNL8HYNIFj9lkHh+ypEHTIb4TWd0E9ADDwwAMMADDwwAMMADDwwAMMfOhhpIFmKLm
vucPfwhBcYAHGwhBcYeBVaZ4+tDVyblk0be2I5SKkYCmEpJlqQiRn9HESB7ISMRNZiUQIiYV
JFXgcHRiJ2UaCrIGHX2f9BaELmoOytJJXRNIuWO7MiGjAORJVI41pfySeMBny6TKrR6FUbod
FQkBEZARGQkBEZARGQkBEZARGQk53Qhx8EVXGAhBQYAEGAhBQYeG1Fm4upcBoSpNBZT9kXkS
2iSvf2INLC+50H6wuYUFRtkkI6Hq9latMpISmNMsgbR1gosjhFYLKjjRsUwM4qwWApFQaBkW
ApFQaBkWApFQaBkWAplfv0+yf8dXd1P+q/0FP8jv6rf/HRWIBwLA8CAvAwLPfBv0nGScdNlD
yisejxa0d9PZOMMdMp5GhsSLdaZdgjHvPDkYLtBXOseT5KQO+6k3GVdt7ZLvj1at14TSs4bZ
pjt0HNU0adhSoztPXHMmSvoOoMs4bKWmWygRdwalub9GbiIbCDzhL2ryXi0cNVxFN+OAMcRZ
JScBM2WGXOj3785pqBEY4e8UibCVaXhTijMWGGTfZ0lPlUPVEd7bKfqxrIvJRJvgfx60eN3P
o7xvMfLJ0PSpgy3X5j18JHnuth39sjmP9YdGFXDljFBH1OBo9heGMzvQjvqLfhiJEpUaA+lx
sVibwWZB0lhVl3Tfo9husCTysHH9Jhus6jW/65PXoLDeU9teg69guM4Zk3YzsL0l1Px/ggBf
KoLrfcfh7yPboL9HIDjDcM0lBwV2Y0uN0l1TBDiA8pguseKoP8v9gu0fQMM2vxQXGAXZjB72
QXWPDMIqvnC6y6Zg+Q+2F6ygvUMMivtguMityWfraHoLdx/qHMofSoLdx/S9D6dhuM4oxMcQ
vB0lRsV2aQvD0luZjBYOfaoLdzG9kO3H6ygjmhwO3C6yI2KbNo3B6S3sxAknPN0luZjeqn7D
dZwRzQwnbBdZEbltuxxXQQXY+CLxtczjvmjI56bf9t3d9Hu61mL/qZsD8rYHozHlL4AwzS/0
COCkaNDhThO8hcYennfcIrjfeot47MFquOEqQcyPFXl2jNk4smvuejWfiC0rar0YXa8vUAR/
5cY8v7qLuE4hAeoPvxDZBeIgHC4h+NpI1wN9o6fcQhGn3ospozMASkpR+pUGcFCRUINASEFC
ayz4HOb+OYEio5wCsugNEVKXaEiITQ4vUscChzAERnYOwHR5/nmUkxNSwOOSnSWthP2b4Q0x
4o6Fcyp0WvnCFeJVeIxofksdiGXoMFoFIVyIoXyKFqFeLRUkTksXvzwtWxgNOb0EDaZMYE4V
+xVMYVS+TcG0OxaHqbnlMxiipmA13AoCuzYN5oH2xnSKdwxPdSUMqXgOpChMbiCFLG1gn4Mh
zH0OHn0aZbGRISfghyRarsnIVyHC5HMcgQdybu6EFxmqcuQBiJ0tD0tD0tD0tD0tD0tD0tzL
bd7AES/HhQ6i3e1rk2GOgIBISAiEgIBISP7hIZGARKWBuoFRq4qAQMrRI54uwMNSXReJHc8Z
/DeXKSjauUOnlEiN1k7ZsMlcnvQrOlk2SEXkbU2d5smUMScBLmSBvzk64PBWRgVEYFBWRgVE
YFBWRgVEYFBWRgV0/JV+nJORv6v9pLe/vlwiMAWEgFBYRAWEgF95W5Y2paIXYyE+KtEzoyxs
uBxpEttrmmSjqKQaSHUqYp6CdKdyAGJgRCYkAGJgRCYkAGJgRCYke5iR6pim+hL/nLCmuEu3
HmAC83u/i/xHvS2pl3SdeN2EevVu5p8wVTPfJXLF47eWigUd+hmC4f3VcwC5VUub2jX/+HV1
AmvnjRhXwP7/m283kfWgTZ8qM8yhrWdn8h3d9RZDdWL67sB6CsrpNhu9+y2oMy0MViphVbJe
YpnPs0rGW1p/pRmuNMqDL9shle9wiqM4OtJoZmUGW0ihFNbYVMt9YX/T5ju5EGtaYRzmAzjM
a9IzscCzseYZOxwRGZmZjMz8JMzeDLT/5RzsJMz6hld5wyO48odxEmd2wyOfYZfizj2VTY2Z
DL76hlr78ob9EmbxwyNbY5Wde0t3Emb1wyt88ob9IzvcCzveY5Xfe0Pbk5nPh53bY57PP6nN
h5XPsCLHWhBnHDLmwCzGWh5DrwTceMsaCLMbYFWPsidnHjrnwiLGWxZDr4qzjx9mwirGWxln
HjrHZplTYp1Dr06zjpZjs08Js0eDrU/5x0sJs0pzTfe9rRk3Xv+4DXf1tX+h1/sEf3f+r/2v
5b+mPZ4bh9OGp8xqPZ+npI/6/KT/kX8o+m7e4qH/4tnw9mXnQs+g2LL+wdPeeSVf9FPeOXjj
zLlHilhr+i5Ep47XcR9ER2+jv/iPd3Hf48/v55uLefbd3XxVxL8wV/jztnVJFMtNfzEQLeD+
m6G8S9He8h6Z2L13W+sOZ985qTXNmfz3e37LsbrH/3fxEjq82sdvu7/UZBVb8/p7e4hr+h8F
Q5biJWLrJ/p1nbLfk8Ke8dX/2fstJyLL4w1n29593jCU628wF5BeeXdO1Wx98vxSLGdZZeee
+mQW1HaQ3fzF3qv86Pd9526C5zFXnf2izKP1DviCIwDq6cJvmrf8hrO/Pe3tPe9tf8uP+h6a
vb4av/h7yPZCxbvTbg8K18jrUe+MeFf6iHuOfVPZnGT8vLl6cTIkmtC95p8ammU/w70T/2KX
c7bvaatCZ9v7f8xLeoNdnXrMz4m/xfgndKXDXXOP/OfZexDa30y5DxPknLctvaX3T8V+yyy+
wKLUn6rWm3U62CPwXZNzFhMQqXbc9tyF4Z/A1FLOFK/Ke8SXUPfzv+d5hnsRu5Da2Vy5f13e
xDPm/aM3VMKrt8hNyrvo9bBcj8lh6LfL/tPZzc8KZO9vcR2P2tX/WZVv74Hv9tn/dyhJbS5L
J6zcyivJ/Ezn+6aeFHf8fe1F/YFfUe5rvlvMV3WM7c60y3/TLPLW/O/PpLmcoayHe396z/jl
f1h2KmNZzbj87/6DmzedbCJvuLzr7g+sDaZx/ZxEV4sDKquL0tv8I7CquLm2Cf4d0q9CTT6A
12+Ev9VtNPHqb76cerTLPAMrOAMr20mzzj/FDfzyhvZ9w30G+v/aZS87u+m7bD/86u99X8vK
XFVed+0XZnlXQcBkUtP8lnmsFXb0pQiKu3psz2yZ/8bN5d/fV93TT/akyir85Qi/d1MXx0Fz
dFTn8tTL9tPtJm7enau3nvBX4bnezpbjfJNz9ONz9ON5eXenl+2pqv96Zj8mlm7enqXcfy3O
t23Ox+2n82UcvTrdvT1dfe/t03ONz3+0kwK370J37zXeuvdS8tP56lW7enau3rLuy3+pP4Q3
70M37nWT13+pPbn7dat7dao7dao7dao7dq39Oty9Oty9Oty9Ot29Oty9ON39ON39ON39Ot29
Ot09Ot09Otw9ONz9ON39ON09ONz9ONz9Ody9Otw9O17enW5enW6enW7enW5enW6enW5enG6e
nm7enW7enW5enG4enW6en6cvTzdvTDcvTrcvTLcvTLcvTrdvTzdvTrdvTrcvTdu3plu3pO37
0c370A370M370c370K37Un79bmu684NX9wPc+39xb4XXcUrUTG+m7+4tXWvw94bqPu/x3Qz+
08w6Pc5l8rLXFNNHc84ifEpjHP99ljHv+hTOoPmvwuecyvsNnd84pbbkf9Vv9xsLfTZhiH/y
NkabhHfgdy3M+xHWtrf8h578Hr/QWTun5D1j3esegepZ2NMMzuhhZxNMMyNMWGixxF3X74p7
rdcQMLHr3Ur5f/4g7rdcx91OOFzyshYdEWvb3ix4i7pd8N3UPC/wHv5+Hu64F5pUxvd5L4tZ
jb+wjXdf9EyjlXXFqg8axJ3HvpIHhv9uL/475LK+h3f3byxkeKonj3cT2nWxF0xsv93cxb/x
2Jg8ilPc9iu8iLegh6KmuNGP2f/bv72PVH9yrrPOy7LP6xl5BW7Sy8bXretyClrK/DsSIklv
/q2FK5FWsjzLf19foIPLfd/+Dz2vz3tt9RD7ssXKzGfUs90uR2LaXdhpdR7jyhBOVX/4lM25
L58zXKMHZOvi00PJEPefY6rr5Xd6aEeB5R0Uq5X0nvKodNB/yf60Xsarp91qjNDKHo5vNe99
VHZ5VXnLEfh5lv8q3W/+9TKoQvrq5PdwNUPh6otXPh600KbyRUF+NWhhf/DXXVdDSJVoyQoy
QoyQoywXKpk6Ch2xKyzUUPINSjh2mW5Oj1KWtMjNozDylyMtolriaAFxA2pGRoxQoxQoxQox
QoxQoxQoxQoxQoxQkqqQcIQcIQcIQcIQcIQcIQcIQcIQcIQcIQcIQcIQcIQcIQcIQcIQcI/+
IOk/apYlj6UOEFCEFCEFCEFCK9Uo0TBZhAZhAZhAZhAZhAZhAZhAZhAZhAZhAZhAZhAZhAZh
AZhAZhAZhAZhAZhAZhAZhAZhAZhAZhAZhAZh8vrsQ8TyCxX11hO/fOt1OpLE3Idh460FSc1n
/XqwQk2X/f4hb2XQIQNIQNI/XQNIRoGEoGEoGkfFUDiuTJAZXgEraBVKVUDSq8DsH8dtneOe
eKGjsoCKyBoIEEVy0LGE2QlyF9O+M7BDJKNQ3pFk87x6+gCRfxwquUMLVBi+QQ2O2OZfoP4F
tHESlhUQGgdy+IbX5gy6LyLQpqlClORfoP4iBW9IFppIl2kQUp7U8R2wqmCKfVzH9V5v0r3D
WyJiMTI2URaKxk12L3j5lhFe/rNhYRdI9q9IbqxKSvoY6W7f+0hpeuqcQl02kzziuZtplTIa
VMfaQssMKZxb0r6jF6mYlePqv3aNes5HKu1HKt9Hah6NeSpbsSsFz+RteSpbs6jW/C3PXpbM
4H8brfWu9kuxgfptN2M7Kdj1/uhD+JlfKpbs+HNUUvxPbpb0fgM8XTes0NGIRjNGtbLdj1TB
D+dkfKpbseKo/HRePpb0fQM8XQes0NGIRjNGsbLdj1zAD+tjfKpbseGo/HOeXpbM4LFD/dj3
S6GjUoxWfraHpb09rorHMofSpb09roT9D6dluxgjGzwB9GS3YkCN2aQvj0N6mNGIWqnW6Gdz
G96lafpbM4oZokp2S6GjUoxWD6dkuR3sxAhT90S3ob2oX7U7LdjBHNDlP1WS3YkCN26GHfBJ
djvLPmv8iHuctuN+TXd8iP++H/qthxURqoml/N/yIn8tXfZOo0X9nfIHfxr+63fxb/RkTNgi
CypGQRBUUeuSRhUdUUmnGLl80w2CkuDjyiejJHldlxgy3BSZdqTQ5A8L0JGQSRZiayo9Bhki
kyIdZUTeb0S7jdsjBrQUQ+rsjbLMgsCZtRPnuFCUoSClo1rxqQCRhwAQKt5NjYRDPyIQKLSv
lkLtCfi6Q0VfnegJzx5UMaricrmn4DzITl/khNyoIdpPSSSC0IIvUmV0S4ExpA+pAoJvlC9U
T4kiqsV8m6lO9JJT2mkJa1cyDVcMJ5mkz77BqoOY1GbM/YTS+I5o+skJfNbDeWZ7Za8eoeWL
cPcdOEpaWI5iWk5MIzZQmzgMnBZODycGk5MvIycmPjwv8dv76H+ZxdBQXA0FIdFAdBQX+SV6
K0AoLqTxhubl0gKBw6l/Km6ME5iKfXlmgD+n1JSJM8CgmI5TSlnoD7S20oTAJU4kUZG0hJgh
AQJVdfKSVRwm0rpl5VPlCjGvULL0dsXyxUWAHxYHELrHgdyaRdwrCChIpgYIh9rjd4YUHqQF
cpSlcpq4HbK1zjhno0pCDpyEV+jUpL1rsl88fsp8kzW0EhGRqRdiFhceVr1WuQ10XFT2QTJ2
t0UCUvCUvCUvCUvCUvCUvCUvCUvyLa8J/1ckNca/AlrAIKAiCgoAIKv4gosAbSp2b2XGY5iE
bjfweZ0TJg8WKroKhuXrRnGnbUlg1MpTmi2Hm0FzoKBLZM10hht1mIvk0N91C2s3uala15Li
KxYiBpahOghyKGS7URYz2KhsPRyZUhgVd6Quo6jJhkMsSwm3tShj1sH/IpSwKJGkyqLpDFVy
+IVwMsSwKlXWORnKnTB3EwNBcTA3EwNBcTA3EwNBcT+VQ2J/pLe4HRb0BgTQK/AwJAcyzawJ
m1KPJINqkNSgmieTqqogqJMRrZsMQvJN6EapKmMuSeUiMvK3iYtioEdPpQT2S+I+ucE5UjcZ
AlEdTUISqnUT1FyPCSycVpwojKGaSG02cQbzBJ/DS+Hk8PI5fQy/gk/BJ/zXgUYYoDL5vczj
vmDT56bfN3+Eu61mL/qZAFMrAKozHlLgDwTG/0C4Cp1cFOFOBX78PXnfARnP8k8e0mxdfZz6
GtsWyB8fV71y/p7u7BQICEiAhIQICEie+TIaUl1NQSNa1zta4TkOGUZdDtaRyZbXlXKkimol
oOIlwWuscMocwYLVz3TMoAnIwJCciAnIwJCciAnIwJCciAnI0elR7VGtXZ0elR7VGtXZ0elR
7VGtXZ0elR7VGtXZ0elR7VGtXZ0el/Cr9KHnavyxx6+IGG1dlDr7uya1vuKBZZRW5VWoFEoF
EUmVgWQgWQexktQkxHt5bs4K/87jyWIqoBAuvJHc91eET32gM2knsK/oaSryU3MSte1kisxD
kAiS58mkKFCcH/dbbZRgoooO5sxYgksUKUWONqkqo9Jdg7xyyxrX7dWtxtUBIbWlPSbVZQU7
UOR0b9hod+Qmt+Q2d+Qut+Q+d+Qht+Q7MPo3aiAarAarAarAarAarAarAarANgn/trEK64vN
VQ2XZAcDA3AwNAcDA34lTiukjCVbpoLol0LQzN5FnyEHx5QJcBkm9r24Mmox6XD7QXbkvBg3
A4NAeDg3A4NAeDg3A4NAeDg34/e4NIg3A4NAeDg3A4Neui3IMqNDviNQFhxIdcoMJbQUqRxU
tKpIy5HIoDe9CfCBkRkCKfwPC5xCiDqDJbbIAoHA6BgeAoHA6BgeAoHA6BgeAoH/aD9QDoHA
6BgeAoHA6xzVoH+RtFYlroyiQqUXJ1Rhiww2D8KqHqQhkhPNq/AvwWWiHNIIj63NKfTtHJhR
S0Y5CG6oGEsKyvl171hFEKG3ggNGB4ScxB3SqHbGF/W9u2dadta1W0C078hot+QoH+ie4L6h
voH+ie4L6hvoH+ie4Loc8fMlD0kWAnD0kWAnDw54ZPnj4Ixd41ua3FRaDJDBcEUmomMafpvq
Ek+6iL5GR4Q7MJXMf3PRpEKrm7QG0zl+5bA9nF0fWgeTgeTgeTgeTgeTgeTgeTQf89Zbf89/
5uHf13fxt7zGCghAYIAGCghAYovQBDp7T7ncgz+5ghiSH61HT9Aiy3MsCIqgTxncKt17p+64
KHdfjNS5SRJycVw0jHKbaDzkAppsNDuQv6X4ee2MMJpeNvoPQWbsAPaXCNFaE6G5ExUB7QwP
SFMtD1gXA0ES6QMG9ASEgEBIRASEgEBIRASEgEBIRAS0vJQimilnmwAZbdwHnN/IOG306pBN
AInqjikd5H/XsSj4YuKKM6V/p7u7BIzIQTC0kANJQT65KNJS1RTKHvew4LyIivmRb8yf9pTF
zSSEcTh8hqqlIKSdwk0HOpiHWIT8LKEL6YJxssqboz0HEaO0yyuLL1Ivu8ujJSxKMyrIvJRJ
PvDPhzZgAjOJRK2SVVgRmB6LSIqkNnDd2rSJO5xsd8jyGKibSFyGm9mrDGFpGknVZLJfSAhU
msbY8M9wjYueNIJFbtJu6Fr7O61c49xYUAGJna4cjrMvm6hHxkxs1/KGvJpPNXhfSRVyEtav
VMmCRXiMhBVqm8dTpqBPxoI/o75JqoTZN1Rc9sXfHmifa88Bvpgu09E2GZbLoQrmWBu5i2eQ
T6DmgPaoo9J2s8jAfw2YNWsd9V0A+EgPB4TA+EgPB4TA+0zc4T591rP+w15oc/waKUf3f+r/
2v5b+mPZ+qp+QfNFQZqU5X/X5QcLtCd9N5Alf8j3eKm+86EsE5nhRWk7q2JV91lWFfpuG26c
66LmH2ROeK9puxueQ3YXX7G71Fqti9lt3d9iuxueqbsrn1O21z6Y86puxet7srX0R2z7n7vY
KQk82UX3g3/pyCTNT9Pd3DPc1P8YeSWXtWWD36w52YvsiHf31v9Hbbi8yCzD9pdfe/9oQeoN
PcRegn3V1u9OPeYEatHuSWeRPSfaVTtn93cxt6Lv+TXfutuQ+cx1nnfyIp1ynXRJavDq6cJv
mrf8hrO/Pmj686b/4dlGmOv27Gu27f4O15cnWt9Vr6K1nzP6kuuiPdxDXnvqnsTjJmDp6cTI
kmtC95p8ammU/w70TA0uIHA70aF8Jf3/4jX8Qb6Ov2F98dZVPwzOlrhrLnnfnvMvYOUmplzH
ifIPXU3GT7J+KfZ5a7aRWoO1XtMvp0tFegvya6LHtBS9ajrvVuAP7HouYxpApqLdR98N/63d
erz2ezH0srkz/qv9iHeM/1YuESVWb5DbkXfRD4zNyXGqv8t83+kNzxrk50/yFPczd3e9blV9
uSfj/7kDT2kyXS0n5kFfT2V3pvumXxxH/nXdxPWfu/8yXfLfZqutY250plv/nWeWs+d+fSXM
5Q1kP8u71n/HLolarY2kNvNyv/rPYO71Tt63fSfZedH0ndQLL+PLmkDlNHQUdXobf5R2FUdX
MtF+w7oV7FOMgDUb7T82X1288zo0uOn360yDAzqDAzqNt5884fxw3sc4bWP8Nth/7vWmE/ur
v5+2wPvubf/F/ryVRlXnP9V2Z5FEXAJV7Df5pJbx1Gd6eZF37U2Zb5sf+tm8u/vq+7pJkzyi
r85Qi/d1MXx0FzdFTn8tTL9tPtJm7enau3nvBX4bnezJ+3XSzcvTzcvTTu3l3Zpvdq6bve2I
vZp5u3p6F3n8tTr9tTsv9JvNF370a37Ud3n3fL9tTz8tPNJsy9Ody9+8ln7bnEf7Tuep1u3p
m796ir8tf6DO09ONz9+p1U9tf6z25enW7enG6enG6enG6en6dvTrcvTrcvTrcvTrdvTrcvTz
dvTzdvTzdvTrdvTLdvTLdvTLcvTzcvTzdvTDdvTzcvTzcvTncvTLcvT9u3pVu3plu3p1u3pV
u3plu3pVu3phu3p5u3p1u3pVu3pBu3plu3pO370c370A370K370C370C370a370c370a370K
37Un7dap7dqz9ON39ONw9ONz9ON39Oty9O15e/mprOPezVP8Dn/df8G+1FH1K1khv5uPe7l1
LcP+m6j7f8N0sPNPs+DXeJ/6yVRTzBHPug+3xjn++yxjX/wJH0HzXYXPO5X2mzOe80tNyv+q
3+Y2lvpsQxjf5GSttwjPwO5bG/4Dr21P+w8d+jVCkTun5D1j3esegepZ2NMMzuhhZxNMMyNM
WGixxF3X74p7rdcQMLHr3Ur5f/4g7rdcx91OOFzyshYdEWvb3ix4i7pd8N3UPC/wHv5+Hu64
F5pUxvd5L4tZjb+wjXdf9EyjlXX/1okXLO5+4Nlfzpv9uL/475LK+h3f3byxkeKonj3cT2nW
xF0xsv93cxb/x2Jg8ilPc9iu8iLegh6KmuNGP2f/bv72PVH9yrrPOy7LP6xl5BW7Sy8bX1Xs
sQ5qy/A/zdJLf/VtLUyLsYHnX+q7/Q53g3X3v/ws978dbbf04FI7lysxHFbPtbk9i2VXYaX0
+ocYgTlBJeJjd+SO/8lCzZdwrINxyjHvPM9118rOdNCvg8IaK18L6zXF0umgf5Pd6LWt10+a
1xmBlD083Gv++qjs8qrzFivw8yXe1brf/+JFQiP2UASoVlZ05/zpt22bEDDUQSKsSBJkWt6z
/roES+68Vv/wDszQIkEIkEIkEIkEIkkXONjoSFqpmzNSvAiFJAnYShRdjIJ1NCt/G0Fi0qQt
5NzXx0q4vja7yTpBU5XZm0p0gqr7qCWz+qJ5UGAdG/L/76q+uGj1ICYoYAy/Ik/RQCIQCIQC
IQCIQCIQCIQCIQCI/SlAyWKARBBgABgABgABgABgABgABgABgABgABgABgABgABgABgABgAB
g87rAQ+5r6jdl4xzu+BlqVSX0+QIQ6/9KWL//Vc1K6B=
}
And, now that I think about it, wasn’t Mitchell the same guy who also argued this in another OT comment thread:
With fractals, I think it’s important for every artist to channel their inner rocket scientist to some level. Not only are we using tools (and every artist needs to know their tools), but the tools are not usually ones that are commonplace (almost everyone has a sense of light or stone), so some study is needed to understand what’s happening. Also, we have the chance to create our own landscapes, not “just” to photograph or paint them.
So, Kerry, now that UF has become just another “canned filter” and can be used to “just” paint photographs, do you still feel the same way?
Well, it should surprise no one that I don’t feel that UF is just another canned filter (JACF). Consequently, I do feel the same way about an artist knowing his/her chosen tools. Even if UF were JACF, I’d feel the same way. Every artist should spend the time and effort needed to learn their tools.
Also, my use of quotes around “just” in my original posting was intended to acknowledge that neither photography nor painting are trivial activities and there is far more involved than simply rendering a scene. I think that making art with UF is similar, even if one makes heavy use of the image-importing feature.
Oops, the UPR I posted uses an unpublished formula for a few of the layers; just select something like sam-SFBM II or dmj-Fractional Brownian Motion instead when prompted. The textures won’t be the same, but the overall image will be recognizable..
BTW, Terry, all you had to do was ask me about how this and other similar images were made and I would have told you..